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SECTION  6

SPACE-FIXED POSITION, VELOCITY, AND
ACCELERATION VECTORS OF A LANDED
SPACECRAFT RELATIVE TO CENTER OF
MASS OF PLANET, PLANETARY SYSTEM,
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6.1 INTRODUCTION

This section gives the formulation for the space-fixed position, velocity,
and acceleration vectors of a landed spacecraft. The landed spacecraft may be on
the surface of a planet, an asteroid, a comet, the Moon, or a satellite of an outer
planet. If the lander is on the surface of Mercury, Venus, an asteroid, a comet, or
the Moon, the space-fixed vectors will be with respect to the center of mass of
that body. If the lander is on the planet or planetary satellite of one of the outer
planet systems, the space-fixed vectors will be with respect to the center of mass
of the planetary system. The space-fixed position, velocity, and acceleration
vectors of the lander are referred to the celestial reference frame defined by the
planetary ephemeris (the planetary ephemeris frame, PEF) (see Section 3.1.1).

Section 6.2 gives the formulation for the body-fixed position vector r b of a
landed spacecraft on body B. The rectangular components of this vector are
referred to the true pole, prime meridian, and equator of date. Section 6.3 gives
the formulation for the body-fixed to space-fixed transformation matrix TB (for
body B) and its first and second time derivatives with respect to coordinate time
ET.

Section 6.4.1 uses r b and TB and its time derivatives to calculate the space-
fixed position, velocity, and acceleration vectors of the landed spacecraft relative
to the center of mass of body B. If body B is the planet or a planetary satellite of
one of the outer planet systems, the satellite ephemeris is interpolated for the
position, velocity, and acceleration vectors of body B relative to the center of
mass of the planetary system. Adding these two sets of vectors (Section 6.4.2)
gives the position, velocity, and acceleration vectors of the landed spacecraft
relative to the center of mass of the planetary system.

Section 6.5 gives the formulation for calculating the partial derivatives of
the space-fixed position vector of the landed spacecraft with respect to solve-for
parameters. There are three groups of these parameters. The first group consists
of the three body-fixed spherical or cylindrical coordinates of the landed
spacecraft. The second group consists of the six solve-for parameters of the
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body-fixed to space-fixed transformation matrix TB. If the lander is resting on the
planet or a planetary satellite of a planetary system, the third group consists of
the solve-for parameters of the satellite ephemeris for this planetary system.

The time argument for calculating the space-fixed position, velocity, and
acceleration vectors of the landed spacecraft is coordinate time ET of the Solar-
System barycentric space-time frame of reference. In the spacecraft light-time
solution, the time argument will be the reflection time or transmission time
t2(ET) in coordinate time ET at the landed spacecraft.

6.2 BODY-FIXED POSITION VECTOR OF LANDED
SPACECRAFT

The body-fixed position vector r b of the landed spacecraft with
rectangular components referred to the true pole, prime meridian, and equator
of date is given by the first term of Eq. (5�1) without the scale factor α. For
cylindrical body-fixed coordinates u, v, and λ, r b is given by Eq. (5�2). For
spherical body-fixed coordinates r, φ, and λ, r b is given by Eq. (5�3).

6.3 BODY-FIXED TO SPACE-FIXED TRANSFORMATION
MATRIX TB AND ITS TIME DERIVATIVES

This section gives the formulation for the body-fixed to space-fixed
transformation matrix TB and its first and second time derivatives with respect to
coordinate time ET. This rotation matrix is used for all bodies of the Solar System
except the Earth. Subsection 6.3.1 gives the high-level equations for calculating TB

and its time derivatives. These matrices are a function of three angles and their
time derivatives. The angles α + ∆α  and δ + ∆δ  are the right ascension and
declination of the body�s true north pole of date relative to the mean Earth
equator and equinox of J2000. The angle   W + ∆W  is measured along the body�s
true equator in the positive sense with respect to the body�s true north pole (i.e.,
in an easterly direction on the body�s surface) from the ascending node of the
body�s true equator on the mean Earth equator of J2000 to the body�s prime (i.e.,
0°) meridian. This geometry is shown in Fig. 1 of Davies et al. (1996). Subsection
6.3.2 gives the formulation for calculating the angles α, δ, and W. The linear
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terms in α and δ represent precession. The linear term in W is the body�s rotation
rate. Expressions are also given for the time derivatives of these three angles.
The effects of nutation on the angles α, δ, and W are contained in the separate
terms     ∆α ,  ∆δ ,  and ∆W . The formulation for calculating these angles and their
time derivatives is given in Subsection 6.3.3.

6.3.1 HIGH-LEVEL EQUATIONS FOR TB AND ITS TIME DERIVATIVES

The body-fixed to space-fixed transformation matrix TB is used to
transform the body-fixed position vector r b of a landed spacecraft to the
corresponding space-fixed position vector     rL

B  of the landed spacecraft (L) relative
to the center of mass of body B:

      r rL
B

B b= T km (6�1)

where

    T AB
T= (6�2)

The matrix A is computed as the product of three coordinate system rotations:

    A R W W R R= +( ) − −( ) + +( )z x z∆ ∆ ∆π πδ δ α α2 2
(6�3)

where the coordinate system rotation matrices are given by Eqs. (5�16) and
(5�18). The angles in Eq. (6�3) were defined in Section 6.3. The formulations for
computing them are given in Subsections 6.3.2 and 6.3.3. From the transpose of
Eq. (6�1), the transformation from space-fixed to body-fixed coordinates of a
landed spacecraft is given by:

      r r rb B
T

L
B

L
B= =T A km (6�4)

The space-fixed position, velocity, and acceleration vectors of the landed
spacecraft are referred to the celestial reference frame defined by the planetary
ephemeris (the planetary ephemeris frame). Since the planetary ephemeris
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frame can have a slightly different orientation for each planetary ephemeris, the
matrix A given by Eq. (6�3) should be post-multiplied by the product     RxRyRz  of
the three frame-tie rotation matrices as was done in Eq. (5�116) for the transpose
of the Earth-fixed to space-fixed transformation matrix. The frame-tie rotation
matrices have not been added to the transformation matrix TB used for all bodies
other than the Earth because these matrices are considerably less accurate than
the matrix TE used for the Earth. Furthermore, if the user desires to obtain
accurate fits to tracking data obtained from a landed spacecraft, he can use one of
the later DE400 series planetary ephemerides which are on the radio frame to
high accuracy. For these ephemerides, the frame-tie rotation angles are zero.

From Eqs. (6�2) and (6�3), the derivative of TB with respect to coordinate
time ET is given by:

    
ú úT AB

T= (6�5)

where
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where the coordinate system rotation matrices and their derivatives with respect
to the rotation angles are given by Eqs. (5�16) and (5�18). The time derivatives

    ú , ú , úα δ  and W  of the angles     α δ, ,  and W  are computed from the formulation
given in Subsection 6.3.2. The time derivatives     ∆ ∆ ∆α δ( )⋅ ( )⋅ ( )⋅, ,  and W  of the
angles     ∆ ∆ ∆α δ, ,  and W  are computed from the formulation given in
Subsection 6.3.3.
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From Eqs. (6�2), (6�3), and (5�18), the second time derivative of TB can be
calculated to sufficient accurcy by calculating:

    
úú úT T W WB B= − +( )⋅[ ]∆

2
rad/s2 (6�7)

and then setting column three of this 3 x 3 matrix to zero.

6.3.2 EXPRESSIONS FOR α, δ, AND W AND THEIR TIME DERIVATIVES

The expressions for α α+ ∆ , δ δ+ ∆ , and   W W+ ∆  for the Sun and the
planets are given in Table I of Davies et al. (1996). The corresponding expressions
for the planetary satellites are given in Table II of this reference. The angles α, δ,
and W are polynomials in time. The angles     ∆ ∆ ∆α δ, ,  and W  contain periodic
terms only. The angles α, δ, and W are represented by the following linear or
quadratic functions of time in the ODP:

    α α α= + −( )[ ]o o o DEGRú /T T rad (6�8)

    
δ δ δ= + −( )[ ]o o o DEGRú /T T rad (6�9)

    
W W W d d Q T T= + −( ) + −( )[ ]o o o o DEGRú /2 rad (6�10)

where T is Julian centuries of coordinate time ET past J2000, calculated from Eq.
(5�65). The variable d is days of coordinate time ET past J2000, which is calculated
from:

    
d = ET

86400
(6�11)

where ET is seconds of coordinate time past J2000. The terms   ú
úα δo o and 

represent precession of the body�s true north pole, and     
úWo is the nominal

rotation rate of the body. The constant and linear coefficients in Eqs. (6�8) to
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(6�10) can be estimated at a user-input epoch, which is converted to To Julian
centuries past J2000 and do days past J2000. Numerical values of the coefficients
in Eqs. (6�8) to (6�10) at the epoch J2000 (i.e., To = do = 0) can be obtained from
Tables I and II of Davies et al. (1996). These coefficients are in the units of degrees,
degrees per Julian century or day, and degrees per Julian century squared. The
constant DEGR = 57.295,779,513,082,3209 degrees per radian.

From Tables I and II of Davies et al. (1996), the only bodies that have a
non-zero quadratic coefficient Q in Eq. (6�10) for W are the Moon and the
satellites of Mars. For Phobos and Deimos, Q is given in degrees per Julian
century squared as shown in Eq. (6�10). However, for the Moon, Q is given as
−1.4 x 10−12 degrees per day squared. It can be converted to degrees per Julian
century squared for use in Eq. (6�10) by multiplying by the square of 36525,
which gives −1.8677 x 10−3 degrees per Julian century squared.

If the user desires to estimate the constant and linear coefficients of
Eqs. (6�8) to (6�10) at a user-input epoch, the coefficients obtained from Tables I
and II of Davies et al. (1996), which apply at the epoch J2000, must be converted
to values at the user-input epoch. The constant coefficients in these equations
must be replaced with:

    

α α

δ δ
o o o

o o o

o o o o

+

+

+ +

ú
ú

ú

T

T

W W d QT 2

and     
úWo must be replaced with:

    
úW

QT
o

o+
2
36525

The coefficients     ú , ú ,α δo o  and Q  and are not changed because they are constant.

From Eqs. (6�8) to (6�10), the time derivatives of α, δ, and W in radians
per second of coordinate time ET are given by:
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6.3.3 EXPRESSIONS FOR ∆α, ∆δ, AND ∆W AND THEIR TIME

DERIVATIVES

The angles ∆α, ∆δ, and ∆W are represented by the following periodic
functions of time in the ODP:

    
∆ ∆ ∆α δ, ,

sin
cos

  
DEGR

W
C

Ai
i

i

n

=






=
∑

1

rad (6�15)

The expressions for ∆α, ∆δ, and ∆W for the satellites of the Earth, Mars, Jupiter,
Saturn, Uranus, Neptune, and Pluto may be obtained from Table II of Davies et

al. (1996). The expressions used for the planet Neptune may be obtained from
Table I of this reference. Each satellite (or planet) has separate coefficients Ci (in
degrees) for each of the angles ∆α, ∆δ, and ∆W. Each planetary system has one
set of polynomials for calculating the arguments A1 to An. However, each
satellite (or the planet) of a planetary system can use some or all of the
arguments A1 to An for that system plus integer multiples of these arguments. In
the input program GIN of the ODP, the user must input the coefficients (specified
below) of each of the polynomials A1 to An used for each satellite (or planet) and
the corresponding coefficients C1 to Cn used for each of the three angles ∆α, ∆δ,
and ∆W. The angles ∆α and ∆W are computed from sines of Ai while ∆δ is
computed from cosines of Ai.

For the Moon and satellites of Mars, the arguments Ai in radians are
computed from:
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A A A d A Ti i i i= + +( )0 1 2

2 /DEGR rad (6�16)

where the coefficients on the right-hand side are in units of degrees. For the
satellites of Jupiter, Saturn, Uranus, Neptune, and Pluto,

    
A A A Ti i i= +( )0 1

/DEGR rad (6�17)

The coefficients for A1 to An for the planetary systems Earth through Pluto are
given in Table II of Davies et al. (1996).

The expression for ∆W for Deimos in Table II of Davies et al. (1996)
contains the term:

    0°.19 cos M3 (6�18)

where M3 is A3 for Mars which is given by:

    M d3 53 47 0 0181510= ° − °( ). . /DEGR rad (6�19)

Also, note that Mars uses the arguments Ai equal to M1, M2, and M3. In order to
make the term (6�18) consistent with Eq. (6�15), we must change the cosine in
this term to a sine. This can be accomplished by defining M4 to be equal to M3
plus π/2 radians:

    M4 = 143°.47 − 0°.0181510 d( )/ DEGR rad (6�20)

Then the term (6�18) can be replaced with the term:

    0°.19 sin M4 (6�21)

which is consistent with Eq. (6�15).

From Eq. (6�15), the time derivatives of ∆α, ∆δ, and ∆W in radians per
second of coordinate time ET are given by:
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where     ∆ ∆α( )⋅ ( )⋅ and W  are computed from cosines of Ai and ∆δ( )⋅ is computed
from the negative of sines of Ai. From Eq. (6�16), the time derivatives of the
arguments Ai for the Moon and satellites of Mars in radians per second are given
by:

    

úA A
A T

i i
i=

×
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1
86400

2
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2

DEGR
rad/s (6�23)

From Eq. (6�17), the time derivatives of the arguments Ai for the satellites of
Jupiter, Saturn, Uranus, Neptune, and Pluto in radians per second are given by:

    
úA

A
i

i=
× ×

1

86400 36525 DEGR
rad/s (6�24)

6.4 SPACE-FIXED POSITION, VELOCITY, AND
ACCELERATION VECTORS OF LANDED SPACECRAFT

6.4.1 SPACE-FIXED VECTORS RELATIVE TO LANDER BODY B

6.4.1.1 Rotation From Body-Fixed to Space-Fixed Coordinates

The transformation of the body-fixed position vector r b of a landed
spacecraft on body B to the corresponding space-fixed position vector     rL

B  of the
landed spacecraft relative to the center of mass of body B is given by Eqs. (6�1)
through (6�3). Since r b is fixed, the space-fixed velocity and acceleration vectors
of the landed spacecraft relative to body B can be computed from the following
derivatives of Eq. (6�1) with respect to coordinate time ET:

      ú
úr rL

B
B b= T km/s (6�25)

      úú
úúr rL

B
B b= T km/s2 (6�26)
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where     
úTB  is given by Eqs. (6�5) and (6�6) and     

úúTB  is obtained by evaluating
Eq. (6�7) and then setting column three of this 3 x 3 matrix to zero. In these
equations, the angles α, δ, and W and     ∆α ,  ∆δ ,  and ∆W  and their time
derivatives are calculated from the formulations given in Sections 6.3.2 and 6.3.3
using coefficients obtained from Davies et al. (1996).

6.4.1.2 Transformation of Space-Fixed Position Vector of Lander Relative to

Body B From Local Space-Time Frame of Reference of Body B to

Solar-System Barycentric Space-Time Frame of Reference

The space-fixed position vector     rL
B  of the landed spacecraft L relative to

body B calculated from Eq. (6�1) is in the local space-time frame of reference of
body B. This vector must be transformed from the local space-time frame of
reference of body B to the Solar-System barycentric space-time frame of
reference. The equation used when body B is the Earth is Eq. (4�10). Applying
this equation to body B gives:

      
r r V r VL

B
BC B

B
L
B

B L
B

B( ) = − −





− ⋅( )1
1

22 2
�L

U

c c

γ
km (6�27)

where 
    

rL
B

BC( )  is the space-fixed position vector of the landed spacecraft L relative

to body B in the Solar-System barycentric space-time frame of reference. The

gravitational potential     UB at body B is calculated from Eq. (2�17) where i = B

(body B). The quantity     VB  is the velocity vector of body B relative to the Solar-

System barycenter. The quantity     
�LB is analogous to     �L , which applies at the

Earth. From Eq. (4�7), the value of     
�LB at body B is the value of the constant L

defined by Eq. (2�22) at the landed spacecraft on body B in the Solar-System

barycentric space-time frame of reference minus the corresponding value LB

defined by Eq. (2�22) at the landed spacecraft in the local space-time frame of

reference of body B. The analytical expression and numerical value of     �L  for the

Earth are given by Eqs. (4�16) and (4�17). Eq. (4�16) is L given by Eq. (4�12)

minus LGC given by Eq. (4�14). We need expressions for     
�LB for each body B
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where we expect to have a landed spacecraft. The obvious first candidates are

Mars and the Moon.

Eq. (4�16) for     �L  at the Earth changes to the following expression for     
�LMa

at Mars:

    

�L
c AU a a a

a a a a

Ma
S Me V E M

Ma

J

J

Sa

Sa

U

U

N

N

Pl

Pl

S Ma

Ma

=
+ + + +


 + +

+ + + +
+ 




1

2

2

µ µ µ µ µ µ µ

µ µ µ µ µ
(6�28)

For an accuracy of 0.01 mm in 
    

rL
Ma

BC( )  computed from Eq. (6�27), all of the

�small body� terms in Eq. (6�28) can be deleted, which gives:

    

�L
c AU a

Ma
S

Ma
=

3

2 2

µ
(6�29)

Inserting numerical values from Section 4.3.1.2 gives:

    
� .LMa = × −0 9717 10 8 (6�30)

From Table 15.8 on p. 706 of the Explanatory Supplement (1992), the equatorial

radius of Mars is 3397 km. The effect of a change of 1 in the last digit of     
�LMa

given by Eq. (6�30) on 
    

rL
Ma

BC( )  computed from Eq. (6�27) is 0.003 mm. The

effect of     
�LMa on 

    
rL

Ma
BC( )  computed from Eq. (6�27) is about 3.3 cm. The first

term of Eq. (6�27) reduces the radius of Mars at the lander by about 5.5 cm in the

Solar-System barycentric space-time frame of reference.

Eq. (4�16) for     �L  at the Earth changes to the following approximate
expression for     

�LM at the Moon:
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µ µ µ µ µ
(6�31)

where aB is the semi-major axis of the heliocentric orbit of the Earth-Moon

barycenter B in astronomical units. The largest of the �small body� terms in this

equation is the gravitational potential at the Moon due to the Earth multiplied by

3/2. It changes 
    

rL
M

BC( )  computed from Eq. (6�27) by about 0.03 mm, which can

be ignored. Hence, all of the �small body� terms in Eq. (6�31) can be ignored

which gives:

    

�L
c AU a

M
S

B
=

3

2 2

µ
(6�32)

Inserting numerical values from Section 4.3.1.2 gives:

    
� .LM = × −1 4806 10 8 (6�33)

From Table 15.8 on p. 706 of the Explanatory Supplement (1992), the equatorial

radius of the Moon is 1738 km. The effect of a change of 1 in the last digit of     
�LM

given by Eq. (6�33) on 
    

rL
M

BC( )  computed from Eq. (6�27) is 0.002 mm. The effect

of     
�LM on 

    
rL

M
BC( )  computed from Eq. (6�27) is about 2.6 cm. The first term of Eq.

(6�27) reduces the radius of the Moon at the lander by about 4.3 cm in the Solar-

System barycentric space-time frame of reference.

The general expression for     
�LB for a lander on any planet, asteroid, or

comet is the generalization of Eq. (6�29):

    

�L
c AU a

planet
S

planet
=

3

2 2

µ
(6�34)
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where aplanet is the semi-major axis of the heliocentric orbit of the planet,
asteroid, or comet in astronomical units. For a lander on a planetary satellite,

    

�L
c AU a c a

satellite
S

planet

planet

satellite
= +

3

2

3

22 2

µ µ
(6�35)

where aplanet is defined above, µplanet is the gravitational constant of the planet,
and asatellite is the semi-major axis of the orbit of the planetary satellite in
kilometers. For a lander on the Moon, the second term of this expression is
included in Eq. (6�31) but is ignored in Eq. (6�32).

In Eq. (6�27), the gravitational potential UB at the lander body B should
include the term due to the Sun plus the term due to a planet if the lander is
resting on a satellite of the planet. Note that the latter term is ignored for a lunar
lander. If the lander body B is Mercury, Venus, the Moon, an asteroid, or a
comet, interpolate the planetary ephemeris (plus the small-body ephemeris of
the asteroid or comet) for the position vector     rB

S  from the Sun to body B as
described in Section 3.1.2.1. If the lander body B is the planet or a satellite of one
of the outer planet systems, interpolate the planetary ephemeris for the position
vector     rP

S  from the Sun to the center of mass P of the planetary system and
interpolate the satellite ephemeris for the position vector     rB

P  of the lander body B
relative to the center of mass P of the planetary system as described in Section
3.2.2.1. The position vector from the Sun to the lander body B is given by:

    r r rB
S

P
S

B
P= + (6�36)

For a lander on any body B, the distance from body B to the Sun is given by the
magnitude of the position vector     rB

S :

      
rBS B

S= r (6�37)

If the lander body B is a satellite of one of the outer planet systems, interpolate
the satellite ephemeris as described in Section 3.2.2.1 for the position vectors of
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the lander body B and the planet 0 relative to the center of mass P of the
planetary system and calculate the position vector from the lander body B to the
planet 0:

    r0
B = r0

P − rB
P (6�38)

The distance from the satellite B that the lander is resting upon to the planet 0 is
the magnitude of the position vector     r0

B:

      
rB0 0

B= r (6�39)

If the landed spacecraft is on the Moon, any planet, an asteroid, or a comet, the
gravitational potential UB at the lander body B is given to sufficient accuracy by:

    
U

rB
S

BS
=
µ

(6�40)

where µS is the gravitational constant of the Sun obtained from the planetary
ephemeris and rBS is given by Eq. (6�37). If the landed spacecraft is on a satellite
of one of the outer planet systems, the gravitational potential UB at the lander
body B is given to sufficient accuracy by:

    
U

r rB
S

BS B0
= +
µ µ0 (6�41)

where µ0 is the gravitational constant of the planet obtained from the satellite
ephemeris as described in Section 3.2.2.1 and rB0 is given by Eq. (6�39).

In Eq. (6�27), VB is the velocity vector of the lander body B relative to the
Solar-System barycenter. For a landed spacecraft on Mercury, Venus, the Moon,
an asteroid, or a comet, interpolate the planetary ephemeris (plus the small-body
ephemeris of the asteroid or comet) for the velocity vector     úrB

C of the lander body
B relative to the Solar-System barycenter C. The velocity vector VB is given by:
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    V rB B
C= ú (6�42)

For a lander on the planet or planetary satellite of a planetary system, interpolate
the satellite ephemeris for that system for the velocity vector     úrB

P  of the lander
body B relative to the center of mass P of the planetary system. Also, interpolate
the planetary ephemeris for the velocity vector     úrP

C of the center of mass P of the
planetary system relative to the Solar-System barycenter C. For this case, the
velocity vector VB is given by:

    V r rB P
C

B
P= +ú ú (6�43)

It is not necessary to transform     úrL
B  and     úúrL

B  calculated from Eqs. (6�25) and
(6�26) from the local space-time frame of reference of body B to the Solar-
System barycentric space-time frame of reference using the first and second time
derivatives of Eq. (6�27) with respect to coordinate time in the barycentric frame
because the computed values of observed quantities require accurate values of
the position vectors of the participants, not accurate values of the velocity and
acceleration vectors.

6.4.2 OFFSET FROM CENTER OF MASS OF PLANETARY SYSTEM TO

CENTER OF THE LANDER PLANET OR PLANETARY SATELLITE

If the lander body B that the landed spacecraft is resting upon is the planet
or a planetary satellite of one of the outer planet systems, then the position,
velocity, and acceleration vectors of the lander body B relative to the center of
mass P of the planetary system must be interpolated from the satellite ephemeris
for that planetary system as described in Section 3.2.2.

If the landed spacecraft is resting upon a satellite or the planet of one of
the outer planet systems, the space-fixed position, velocity, and acceleration
vectors of the landed spacecraft relative to the center of mass P of the planetary
system are computed from the following equations:

    
r r rL

P
L
B

BC B
P= ( ) + (6�44)
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where 
    
rL

B( )BC
 is calculated from Eq. (6�27) using     rL

B  calculated from Eq. (6�1).

The position vector     rB
P  of the lander body B relative to the center of mass P of

the planetary system is obtained from the satellite ephemeris.

    ú ú úr r r L
P

 L
B

 B
P= + (6�45)

where     úrL
B  is calculated from Eq. (6�25) and     úrB

P  is obtained from the satellite
ephemeris.

    úú úú úúr r rL
P

L
B

B
P= + (6�46)

where     úúrL
B  is calculated from Eq. (6�26). In this equation,     

úúTB is obtained by
evaluating Eq. (6�7) and then setting column three of this 3 x 3 matrix to zero.
The acceleration vector of the lander body B relative to the center of mass P of
the planetary system is obtained from the satellite ephemeris.

6.5 PARTIAL DERIVATIVES OF SPACE-FIXED POSITION
VECTOR OF LANDED SPACECRAFT

This section gives the formulation for calculating the partial derivatives of
the space-fixed position vector of the landed spacecraft with respect to solve-for
or consider parameters q. Subsection 6.5.1 gives the partial derivatives of the
space-fixed position vector     rL

B  of the landed spacecraft L relative to the center of
mass of the lander body B with respect to the body-fixed cylindrical or spherical
coordinates of the lander. Subsection 6.5.2 gives the partial derivatives of     rL

B  with
respect to the six solve-for parameters of the body-fixed to space-fixed
transformation matrix TB for body B. If the lander is resting upon the planet or a
planetary satellite of one of the outer planet systems, the offset vector     rB

P  from
the center of mass P of the planetary system to the lander body B is a function of
the solve-for parameters of the satellite ephemeris for this planetary system. The
partial derivatives of     rB

P  with respect to the satellite ephemeris parameters are
given in Subsection 6.5.3.
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6.5.1 CYLINDRICAL OR SPHERICAL COORDINATES OF THE LANDER

From Eq. (6�1), the partial derivatives of the space-fixed position vector of
the lander L relative to the center of mass of the lander body B with respect to
those parameters q that affect the body-fixed position vector of the lander are
given by:

      

∂
∂

∂
∂

r

q

r

q
L
B

B
b= T (6�47)

where, from Section 6.2, the partial derivatives of the body-fixed position vector
rb of the landed spacecraft with respect to the cylindrical coordinates u, v, and λ
of the lander are given by Eqs. (5�203) to (5�205) with the parameter α  set to
unity. The partial derivatives of rb with respect to the spherical coordinates r, φ,
and λ of the lander are given by Eqs. (5�206) to (5�208) with α set to unity.

6.5.2 PARAMETERS OF THE BODY-FIXED TO SPACE-FIXED

TRANSFORMATION MATRIX TB

From Eq. (6�1), the partial derivatives of the space-fixed position vector of
the lander L relative to the lander body B with respect to the six solve-for
parameters q of the body-fixed to space-fixed transformation matrix TB for body
B are given by:

      

∂
∂

∂
∂

r

q q
rL

B
B

b=
T

(6�48)

The solve-for parameters are     α α δ δo o o o o o      and , ú , , ú , , úW W  of Eqs. (6�8) to
(6�10). From Eqs. (6�2), (6�3), and (6�8) to (6�10), the partial derivatives of TB

with respect to the six parameters are given by:

    

∂
∂α α

δ δ
α α

α α
∂α

∂α α
π

π

π
T

R W W R
dR

d
B

o 0
z x

z
T

o o, ú , ú
= +( ) − −( ) + +( )

+ +( )












∆ ∆
∆

∆2
2

2

(6�49)
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where

  

∂α
∂α o DEGR

= 1
(6�50)

    

∂α
∂αú o

o

DEGR
=

−T T
(6�51)

    

∂
∂δ δ

δ δ

δ δ
α α

∂δ
∂δ δ

π

π
πT

R W W
dR

d
RB

o o
z

x
z

T

o o, ú , ú
= − +( )

− −( )
− −( ) + +( )













∆
∆

∆
∆2

2
2

(6�52)

where

  

∂δ
∂δo DEGR

= 1
(6�53)

    

∂δ
∂δúo

o

DEGR
=

−T T
(6�54)

    

∂
∂

δ δ α α
∂

∂
π πT

W W

dR W W

d W W
R R

W

W W
B

o o

z
x z

T

o o, ú , ú
=

+( )
+( ) − −( ) + +( )











∆
∆

∆ ∆2 2 (6�55)

where

    

∂
∂

W
Wo DEGR

= 1
(6�56)

    

∂
∂

W

W

d d
ú

o

o

DEGR
=

−
(6�57)

In these equations, the coordinate system rotation matrices and their derivatives
with respect to the coordinate system rotation angles are given by Eqs. (5�16) to
(5�18). The quantities     T −To  and d − do are discussed after Eq. (6�10).
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6.5.3 SATELLITE EPHEMERIS PARAMETERS

If the landed spacecraft is resting upon the planet or a planetary satellite of
one of the outer planet systems, the offset position vector     rB

P  of the lander body
B relative to the center of mass P of the planetary system is a function of the
solve-for parameters of the satellite ephemeris for this planetary system. The
partial derivatives of     rB

P  with respect to the satellite ephemeris parameters are
obtained by interpolating the satellite partials file for this planetary system (as
described in Section 3.2.3) with coordinate time ET of the Solar-System
barycentric space-time frame of reference as the argument:

    

∂
∂
r

q
B
P

(6�58)

For a lander on the planet Mars, the magnitude of the offset vector     r Ma
P  is less

than 25 cm, and these partial derivatives can be ignored.
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